Investigating the CCZ-Equivalence between Functions with Low Differential Uniformity by Projected Differential Spectrum

Xi Chen
Co-authors: Longjiang Qu, Chao Li
National University of Defense Technology

July 4, 2017

CONTENT

(1) INTRODUCTION

(2) PRELIMINARIES

(3) PROJECTED DIFFERENTIAL SPECTRUM

(4) APPLICATIONS

INTRODUCTION

Introduction

- The design of many block ciphers is based on the classical Shannon idea of the sequential application of confusion and diffusion. Typically, confusion is provided by some form of S-boxes, which are functions from $\mathbb{F}_{2^{n}}$ to $\mathbb{F}_{2^{m}}$.
- An ideal S-box should have low differential uniformity, high nonlinearity and high algebraic degree etc. Furthermore, for efficient software implementation, S-boxes are often required to be permutations on fields with even degrees.

Introduction

- Finding APN permutations on fields with even degrees is called a BIG open problem.
- Due to the lack of knowledge on APN permutations on $\mathbb{F}_{2^{2 k}}$, a natural trade-off solution is to use differentially 4-uniform permutations (4-un.PP for short) as S-boxes.
- For example, AES uses the multiplicative inverse function, which has differential uniformity 4.

Differentially 4-Uniform Permutation

Recently, many new constructions of 4 -un. $P P$ over $\mathbb{F}_{2^{2 k}}$ were constructed by adding a properly chosen Boolean function to the Inverse function. $\left(G(x)=\frac{1}{x}+f(x)\right.$, 4-uniform BI permutation, $2^{\frac{2^{n}+2}{3}}$ at least)

Theorem 1.1 (CDZQ16)

Let n be even and f be an n-variable Boolean function. Then $G(x)=\frac{1}{x}+f\left(\frac{1}{x}\right)$ is a 4-un.PP over $\mathbb{F}_{2^{n}}$ if and only if $f(x)=f(x+1)$ holds for any $x \in \mathbb{F}_{2^{n}}$, and for arbitrary $z \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{4}$, at least one of the following two equations holds $\left(\omega^{2}+\omega+1=0\right)$:

$$
\begin{aligned}
& f(0)+f\left(z+\frac{1}{z}+1\right)+f\left(\omega z+\frac{1}{\omega z}+1\right)+f\left(\omega^{2} z+\frac{1}{\omega^{2} z}+1\right)=0 \\
& f(0)+f\left(z+\frac{1}{z}+1\right)+f\left(\omega\left(z+\frac{1}{z}+1\right)\right)+f\left(\omega^{2}\left(z+\frac{1}{z}+1\right)\right)=1
\end{aligned}
$$

Differentially 4-Uniform Permutation

Very recently, C.Carlet, D.Tang, X.Tang, et al., presented a new construction of 4-un.PP on $\mathbb{F}_{2^{2 k}}$, which used the APN property of the inverse function on $\mathbb{F}_{2^{2 k-1}}$.
(4-uniform BCTTL permutation, $\left(2^{n-3}-\left\lfloor 2^{(n-1) / 2-1}\right\rfloor-1\right) \cdot 2^{2^{n-1}}$ at least)

Theorem 1.2 (CTTL14)

Let $n \geq 6$ be even and let $c^{\prime} \in \mathbb{F}_{2^{n-1}} \backslash\{0,1\}$ such that $\operatorname{Tr}_{1}^{n-1}\left(c^{\prime}\right)=\operatorname{Tr}_{1}^{n-1}\left(\frac{1}{c^{\prime}}\right)=1$, and let f^{\prime} be an arbitrary Boolean function defined on $\mathbb{F}_{2^{n-1}}$. Then we define an (n, n)-function $F_{P}(x)$ as follows:

$$
F_{P}(x)=F_{P}\left(x_{0}, x^{\prime}\right)= \begin{cases}\left(f^{\prime}\left(x^{\prime}\right), \frac{1}{x^{\prime}}\right), & \text { if } x_{0}=0 \\ \left(f^{\prime}\left(\frac{x^{\prime}}{c^{\prime}}\right)+1, \frac{c^{\prime}}{x^{\prime}}\right), & \text { if } x_{0}=1\end{cases}
$$

where $x^{\prime} \in \mathbb{F}_{2^{n-1}}$ is defined as $\left(x_{1}, \ldots, x_{n-1}\right) \in \mathbb{F}_{2}^{n-1}$. Then $F_{P}(x)$ is a 4-un pp.

Differentially 4-Uniform Permutation

J.Peng, C.H.Tan, Q.C.Wang, et al. presented a new construction of 4-un.PP. (We call them PTW differentially 4-uniform permutations, $2^{\frac{2^{n-1}-2}{3}}$)

Theorem 1.3 (PTW)

Let $n \geq 4$ be an even integer and $S_{\alpha}=\left\{\alpha, \frac{\alpha+1}{\alpha}, \frac{1}{\alpha+1}, \alpha+1, \frac{\alpha}{\alpha+1}, \frac{1}{\alpha}\right\}$, where $\alpha \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{4}$. Assume that $U=\bigcup_{\alpha \in J} S_{\alpha}$ is the union of some S_{α}, define an (n, n)-function $G_{U}(x)$ as

$$
G_{U}(x)= \begin{cases}I(x+1)+1, & \text { if } x \in U \\ I(x), & \text { if } x \in \mathbb{F}_{2^{n}} \backslash U\end{cases}
$$

Then $G_{U}(x)$ is a 4-un.PP.

CCZ-Equivalence

- Two (n, n)-functions are considered to be equivalent if one can be obtained from the other by some simple transformations.
- There are mainly two such equivalence notions, called extended affine equivalence (EA equivalence) and Carlet-Charpin-Zinoviev equivalence (CCZ-equivalence, graph affine equivalence).
- Two equivalent functions have many similar properties.

CCZ-Equivalence

- Proving the CCZ-inequivalence between three functions is mathematically (and also computationally) difficult, unless some CCZ-equivalent invariants can be proved to be different for the two functions.
- Many CCZ-equivalent invariants are known, such as the extended Walsh spectrum, the differential spectra, Γ-rank, Δ-rank, the order of the automorphism group of the $\operatorname{design} \operatorname{dev}\left(G_{F}\right), \operatorname{dev}\left(D_{F}\right)$, etc.

Main problem

- Due to the big cardinality of these two function classes, it seems to be quite difficult to prove or to check the CCZ-equivalence between them even for small fields (grows double exponentially when n grows).
- Moveover, given a 4-un.PP on a small field, it also seems difficult to judge whether there exists a function in these three classes which is CCZ-equivalent to the given permutation.

Main idea

- There exist some special R, such that the R-projected differential spectrum of any functions in 4-uniform BI permutation (resp. 4-uniform BCTTL permutation, PTW differentially 4-uniform permutation) are equal.

Then we may judge the CCZ-equivalent between two classes of functions by calculating only one variant.

- Research the relationship of Projected Differential Spectrum between CCZ-equivalent functions.

PRELIMINARIES

Preliminaries

- Assume $\Gamma(x) \in \mathbb{F}_{2}[x]$ is an irreducible monic polynomial with degree n and α is a root in the splitting field of $\Gamma(x)$.
Then $\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)^{\top} \in \mathbb{F}_{2}^{n}$ is isomorphic to

$$
\mathbb{F}_{2^{n}}=\left\{a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1} \mid a_{0}, a_{1}, \cdots, a_{n-1} \in \mathbb{F}_{2}\right\} .
$$

In the following, we will switch between these two points of views several times.

Preliminaries

- Differential value: For any $(a, b) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$, let us define the differential value of $F(x)$ at (a, b) as:

$$
\delta_{F}(a, b)=\#\left\{x \in \mathbb{F}_{2^{n}} \mid F(x+a)+F(x)=b\right\} .
$$

Equivalently,

$$
\delta_{F}(a, b)=\#\left\{\left(x_{1}, x_{2}\right) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} \left\lvert\,\left[\frac{\overrightarrow{x_{1}+x_{2}}}{F\left(x_{1}\right)+F\left(x_{2}\right)}\right]=\left[\begin{array}{c}
\vec{a} \\
\vec{b}
\end{array}\right]\right.\right\}
$$

- We remove the usual restriction $a \neq 0$.

Preliminaries

- The multiset $\left\{* \delta_{F}(a, b) \mid(a, b) \in \mathbb{F}_{2^{n}}^{*} \times \mathbb{F}_{2^{n}} *\right\}$ is called the differential spectrum of F.
- The value

$$
\Delta_{F}:=\max _{(a, b) \in \mathbb{F}_{2^{n}}^{*} \times \mathbb{F}_{2^{n}}} \delta_{F}(a, b)
$$

is called the differential uniformity of F.

Preliminaries

- CCZ equivalent: Two functions F and G are called to be Carlet-Charpin-Zinoviev (CCZ) equivalent if there exists an affine permutation $A: \mathbb{F}_{2}^{2 n} \rightarrow \mathbb{F}_{2}^{2 n}$, such that $A\left[\begin{array}{c}\vec{y} \\ G(y)\end{array}\right]=\left[\begin{array}{c}\vec{x} \\ F(x)\end{array}\right]$.
- Let F and G be two CCZ-equivalent (n, n)-functions. We call L a linearized permutation corresponding to CCZ-equivalent transformation from G to F if

$$
\left[\begin{array}{c}
\vec{x} \\
F(x)
\end{array}\right]=L\left[\begin{array}{c}
\vec{y} \\
G(y)
\end{array}\right]+\left[\begin{array}{c}
\vec{\xi} \\
\vec{\eta}
\end{array}\right],
$$

where $L: \mathbb{F}_{2}^{2 n} \rightarrow \mathbb{F}_{2}^{2 n}$ is a linearized permutation, and $\vec{\xi}, \vec{\eta}$ are constants on \mathbb{F}_{2}^{n}.

Preliminaries

- Clearly L^{-1} is also a linearized permutation, and we define the matrix expression of $L^{-1}:=\left[\begin{array}{ll}L_{1} & L_{2} \\ L_{3} & L_{4}\end{array}\right]$, where $L_{i}, i=1,2,3,4$ are matrixes of $n \times n$ on \mathbb{F}_{2}.
- Let the mapping $\mathcal{L}_{i}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$, here $\mathcal{L}_{i}(x)$ is defined by translating its vector expression $\overrightarrow{\mathcal{L}_{i}(x)}=L_{i} \vec{x}$ to the finite field.
- Particularly, F and G are extended affine (EA) equivalent when $L_{2}=0$.

PROJECTED DIFFERENTIAL SPECTRUM

Definition of the projected differential spectrum

Definition 3.1

For any $(a, b) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$, define the R-projected differential value of F at (a, b) as

$$
\begin{aligned}
& \delta_{F-R}(a, b)=\sum_{(s, t) \in \operatorname{Ker}(R)} \delta_{F}(a+s, b+t)= \\
& \sum_{(s, t) \in \operatorname{Ker}(R)} \#\left\{\left(x_{1}, x_{2}\right) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} \left\lvert\,\left[\frac{\overrightarrow{x_{1}+x_{2}}}{F\left(x_{1}\right)+F\left(x_{2}\right)}\right]=\left[\frac{\overrightarrow{a+s}}{\overrightarrow{b+t}}\right]\right.\right\}
\end{aligned}
$$

Furthermore, we define the R-projected differential spectrum of F as the multiset

$$
\left\{* \delta_{F-R}(a, b) \mid(a, b) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} *\right\} .
$$

Example:
Let $\operatorname{Ker}(R)=\{(0,0),(0,1)\}$. Then $\delta_{F-R}(a, b)=\delta_{F}(a, b)+\delta_{F}(a, b+1)$.

Relationship between CCZ-equivalent functions

Theorem 3.2

Suppose that two functions F and G are CCZ-equivalent. Let $R: \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2}^{m}$ be a surjective linear function. Let L be a linearized permutation corresponding to CCZ-equivalent transformation from G to F. Then for any $(u, v) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$, let $\left[\begin{array}{c}\vec{a} \\ \vec{b}\end{array}\right]=L\left[\begin{array}{c}\vec{u} \\ \vec{v}\end{array}\right]$, we have

$$
\delta_{F-R}(a, b)=\delta_{G-R \circ L}(u, v) .
$$

Proof: According to the definition of CCZ-equivalence, we have

$$
\left[\begin{array}{c}
\overrightarrow{x_{1}+x_{2}} \\
F\left(x_{1}\right)+F\left(x_{2}\right)
\end{array}\right]=\left[\begin{array}{c}
\overrightarrow{x_{1}} \\
F\left(x_{1}\right)
\end{array}\right]+\left[\begin{array}{c}
\overrightarrow{x_{2}} \\
F\left(\vec{x}_{2}\right)
\end{array}\right]=L\left[\begin{array}{l}
\overrightarrow{y_{1}+y_{2}} \\
G\left(y_{1}\right)+G\left(y_{2}\right)
\end{array}\right]
$$

Thus $\left[\frac{\overrightarrow{x_{1}+x_{2}}}{\overrightarrow{F\left(x_{1}\right)+F\left(x_{2}\right)}}\right]=\left[\begin{array}{l}\vec{a} \\ \vec{b}\end{array}\right] \Leftrightarrow\left[\begin{array}{l}\overrightarrow{y_{1}+y_{2}} \\ G\left(y_{1}\right)+G\left(y_{2}\right)\end{array}\right]=\left[\begin{array}{c}\vec{u} \\ \vec{v}\end{array}\right]$. Hence $\delta_{F-R}(a, b)$

$$
\begin{aligned}
& =\sum_{\left(s_{1}, t_{1}\right) \in \operatorname{Ker}(R)} \#\left\{x_{1}, x_{2} \in \mathbb{F}_{2^{n}} \left\lvert\,\left[\frac{\overrightarrow{x_{1}+x_{2}}}{F\left(x_{1}\right)+F\left(x_{2}\right)}\right]=\left[\frac{\overrightarrow{a+s_{1}}}{b+t_{1}}\right]\right.\right\} \\
& =\sum_{\left(s_{1}, t_{1}\right) \in \operatorname{Ker}(R)} \#\left\{y_{1}, y_{2} \in \mathbb{F}_{2^{n}} \left\lvert\,\left[\frac{\overrightarrow{y_{1}+y_{2}}}{G\left(y_{1}\right)+G\left(y_{2}\right)}\right]=L^{-1}\left[\frac{\overrightarrow{a+s_{1}}}{b+t_{1}}\right]\right.\right\} \\
& =\sum_{\left(s_{2}, t_{2}\right) \in \operatorname{Ker}(R \circ L)} \#\left\{y_{1}, y_{2} \in \mathbb{F}_{2^{n}} \left\lvert\,\left[\frac{\overrightarrow{y_{1}+y_{2}}}{G\left(y_{1}\right)+G\left(y_{2}\right)}\right]=\left[\frac{\overrightarrow{u+s_{2}}}{v+t_{2}}\right]\right.\right\} \\
& =\delta_{G-\operatorname{RoL}(u, v) .}
\end{aligned}
$$

R-projected differential spectrum

R-projected differential spectrum of any 4-uniform BI permutations are equal for some special R.

Property 3.3

4-uniform BI permutation $G(x)=\frac{1}{x}+f(x)$:
Let $R: \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2}^{m}$ be a surjective linear function and $(0,1) \in \operatorname{Ker}(R)$.
Then for any $(a, b) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}, \delta_{G-R}(a, b)=\delta_{I-R}(a, b)$.

Proof:

$$
\begin{aligned}
& \delta_{G-R}(a, b) \\
&= \#\{x \mid G(x)+G(x+a)=b+1\}+\#\{x \mid G(x)+G(x+a)=b\} \\
&= \#\{x \mid I(x)+I(x+a)+f(x)+f(x+a)=b+1\} \\
&+\#\{x \mid I(x)+I(x+a)+f(x)+f(x+a)=b\} \\
&= \#\left\{x \left\lvert\, \begin{array}{l}
I(x)+I(x+a)=b \\
f(x)+f(x+a)=1
\end{array}\right.\right\}+\#\left\{x \left\lvert\, \begin{array}{l}
I(x)+I(x+a)=b+1 \\
f(x)+f(x+a)=0
\end{array}\right.\right\} \\
&+\#\left\{x \left\lvert\, \begin{array}{l}
I(x)+I(x+a)=b \\
f(x)+f(x+a)=0
\end{array}\right.\right\}+\#\left\{x \left\lvert\, \begin{array}{l}
I(x)+I(x+a)=b+1 \\
f(x)+f(x+a)=1
\end{array}\right.\right\} \\
&= \#\left\{x \left\lvert\, \begin{array}{l}
I(x)+I(x+a)=b+1 \\
f(x)+f(x+a)=1
\end{array}\right.\right\}+\#\left\{\begin{array}{l}
x \left\lvert\, \begin{array}{l}
I(x)+I(x+a)=b+1 \\
f(x)+f(x+a)=0
\end{array}\right. \\
\\
\\
+\#\left\{x \left\lvert\, \begin{array}{l}
I(x)+I(x+a)=b \\
f(x)+f(x+a)=0
\end{array}\right.\right\}+\#\left\{x \left\lvert\, \begin{array}{l}
I(x)+I(x+a)=b \\
f(x)+f(x+a)=1
\end{array}\right.\right\} \\
= \\
= \\
=\left\{\begin{array}{l}
I-R
\end{array}\right\}(a, b) .
\end{array}\right. \\
&
\end{aligned}
$$

R-projected differential spectrum

Property 3.4

4-uniform BCTTL permutation $F_{P}(x)=F_{C}(x)+f(x)$:
Let $R: \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2}^{m}$ be a surjective linear function and $(0,1) \in \operatorname{Ker}(R)$. Then for any $(a, b) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$,

$$
\delta_{F_{P}-R}(a, b)=\delta_{F_{C}-R}(a, b)
$$

Property 3.5

PTW differentially 4-uniform permutation $G_{U}(x)=\frac{1}{x+f(x)}+f(x)$: Let $R^{\prime}: \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2}^{m}$ be a surjective linear function and $(1,1) \in \operatorname{Ker}\left(R^{\prime}\right)$. Then for any $(a, b) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$,

$$
\delta_{G_{U}-R^{\prime}}(a, b)=\delta_{I-R^{\prime}}(a, b) .
$$

APPLICATIONS

Judging CCZ-equivalent by special projections on $\mathbb{F}_{2}^{2 n-1}$

Theorem 4.1
Let $n \geq 6$ be an even integer. Then any function in the form $F_{P}(x)=F_{C}(x)+f(x)$ is CCZ-inequivalent to the inverse function I (x), where

$$
F_{C}(x)=F_{C}\left(x_{0}, x^{\prime}\right)= \begin{cases}\left(0, \frac{1}{x^{\prime}}\right), & \text { if } x_{0}=0 ; \\ \left(1, \frac{c^{\prime}}{x^{\prime}}\right), & \text { if } x_{0}=1\end{cases}
$$

Proof: Let $R: \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2}^{2 n-1}$ be a surjective linear function with $\operatorname{Ker}(R)=\{(0,0),(0,1)\}$. According to Theorem 3.2 and Property 3.4, there exists a linearized permutation L corresponding to CCZ-equivalent transformation from I to F_{P} such that
$\left\{* \delta_{F_{C}-R}(a, b) \mid(a, b) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} *\right\}=\left\{* \delta_{F_{P}-R}(a, b) \mid(a, b) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} *\right\}$

$$
=\left\{* \delta_{I-R \circ L}(u, v) \mid(u, v) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} *\right\}
$$

On one hand, it follows from $\operatorname{Ker}(R)=\{(0,0),(0,1)\}$ that for any $a, b \in \mathbb{F}_{2^{n}}$,

$$
\delta_{F_{C}-R}(a, b)=\delta_{F_{c}}(a, b)+\delta_{F_{c}}(a, b+1) \leq 4 \text { or } 2^{n} .
$$

On the other hand, since $\operatorname{Ker}(R \circ L)=\left\{(0,0),\left(\mathcal{L}_{2}(1), \mathcal{L}_{4}(1)\right)\right\}$, there exist $u, v \in \mathbb{F}_{2^{n}}$ such that (proved by Kloosterman Sum)

$$
\delta_{I-R \circ L}(u, v)=\delta_{l}(u, v)+\delta_{l}\left(u+\mathcal{L}_{2}(1), v+\mathcal{L}_{4}(1)\right)=6 \text { or } 8 .
$$

Judging CCZ-equivalent by special projections on $\mathbb{F}_{2}^{2 n-2}$

Proposition 4.2

Suppose that $8 \leq n \leq 14$ is an even integer. Then any function in the form $F_{P}(x)=F_{C}(x)+f_{1}(x)$ is CCZ-inequivalent to any function in the form $G(x)=I(x)+f_{2}(x)$.

Proposition 4.3

Suppose that $6 \leq n \leq 14$ is an even integer. Then any function in the form $F_{P}(x)=F_{C}(x)+f_{1}(x)$ is CCZ-inequivalent to any function in the form $G_{U}(x)$.

$$
\text { Let } \operatorname{Ker}(R)=\{(0,0),(0,1),(s, t),(s, t+1)\} \text {, where }\left[\begin{array}{c}
\vec{s} \\
\vec{t}
\end{array}\right]=L\left[\begin{array}{l}
\overrightarrow{1} \\
\overrightarrow{1}
\end{array}\right] \text {, }
$$

Similarly, we can prove Proposition 4.3.

Proof: Let $R: \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2}^{2 n-2}$ be a surjective linear function satisfying $\operatorname{Ker}(R)=\{(0,0),(0,1),(s, t),(s, t+1)\}$, where $\left[\begin{array}{l}\vec{s} \\ \vec{t}\end{array}\right]=L\left[\begin{array}{l}\overrightarrow{0} \\ \overrightarrow{1}\end{array}\right]$. According to Corollary 3.2 and Property 3.4 and Property 3.5, there exists a linearized permutation L corresponding to CCZ-equivalent transformation from $I+f_{2}$ to $F_{C}+f_{1}$ such that
$\left\{* \delta_{F_{C}-R}(a, b) \mid(a, b) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} *\right\}=\left\{* \delta_{I-R \circ L}(u, v) \mid(u, v) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} *\right\}$.
On one hand, it follows from $\operatorname{Ker}(R)=\{(0,0),(0,1),(s, t),(s, t+1)\}$ that for any $a, b \in \mathbb{F}_{2^{n}}$,

$$
\delta_{F_{C}-R}(a, b) \leq 8 \text { or } \delta_{F_{C}-R}(a, b) \geq 2^{n} .
$$

On the other hand, since $\operatorname{Ker}(R \circ L)=\left\{(0,0),\left(\mathcal{L}_{2}(1), \mathcal{L}_{4}(1)\right),(0,1),\left(\mathcal{L}_{2}(1), \mathcal{L}_{4}(1)+1\right)\right\}$. there exist $u, v \in \mathbb{F}_{2^{n}}$ such that (verified by Magma)

$$
\delta_{I-R \circ L}(u, v)=10 \text { or } 12
$$

Judging the CCZ-inequivalence on small fields

How to check whether or not there exists any function in the classes of 4-uniform BCTTL permutations, 4-uniform BI permutations or PTW differentially 4-uniform permutations which is CCZ-equivalent to a given 4-un.PP?

- The number of 4 -uniform Bl permutation on $\mathbb{F}_{2^{6}}$ is 16198656 $\left(\approx 2^{23.9}\right)$.
- The number of 4-uniform BCTTL permutation on $\mathbb{F}_{2^{6}}$ is at least $5 \cdot 2^{32}$.

Judging the CCZ-inequivalence on small fields

For example: Butterfly structure on $\mathbb{F}_{2^{6}}$

Definition 4.4 (PUB16)

Let T be a bivariate polynomial of $\mathbb{F}_{2^{k}}$ such that $T_{y}:=x \mapsto T(x, y)$ is a permutation of $\mathbb{F}_{2^{k}}$ for all y in $\mathbb{F}_{2^{k}}$. The closed butterfly V_{T} is the function of $\left(\mathbb{F}_{2^{k}}\right)^{2}$ defined by

$$
V_{T}(x, y)=(T(x, y), T(y, x))
$$

and the open butterfly H_{T} is the permutation of $\left(\mathbb{F}_{2^{k}}\right)^{2}$ defined by

$$
H_{T}(x, y)=\left(T_{T_{y}^{-1}(x)}(y), T_{y}^{-1}(x)\right)
$$

where $T_{y}(x)=T(x, y)$.

Judging the CCZ-inequivalence on small fields

Theorem 4.5 (PUB16)

Let $k>1$ be an odd integer and (α, β) be a pair of nonzero elements in $\mathbb{F}_{2^{k}}$. Assume closed butterfly $V_{T(\alpha, \beta)}$ and open butterfly $H_{T(\alpha, \beta)}$ based on

$$
T(x, y)=(x+\alpha y)^{3}+\beta y^{3} .
$$

If $\beta \neq(1+\alpha)^{3}$, the differential uniformity of $V_{T(\alpha, \beta)}$ and $H_{T(\alpha, \beta)}$ is at most 4. Moreover, it has differential uniformity exactly 4 unless $\beta \in\left\{\left(\alpha+\alpha^{3}\right),\left(\alpha^{-1}+\alpha^{3}\right)\right\}$.

Judging the CCZ-inequivalence on small fields

Proposition 4.6

Let $R: \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2}^{2 n-1}$ be a surjective linear function satisfying $\operatorname{Ker}(R)=\{(0,0),(0,1)\}$;
Let $R^{\prime}: \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2}^{2 n-1}$ be a surjective linear function satisfying $\operatorname{Ker}\left(R^{\prime}\right)=\{(0,0),(1,1)\}$ 。
If for any $(s, t) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$, multiset

$$
\left\{* \delta_{H_{T}}(u, v)+\delta_{H_{T}}(u+s, v+t) \mid(u, v) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} *\right\}
$$

is not equal to any of these three multisets below, then H_{T} is CCZ-inequivalent to any functions in the form above.
(1) $\left\{* \delta_{I-R}(a, b) \mid(a, b) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} *\right\}$.
(2) $\left\{* \delta_{F_{C}-R}(a, b) \mid(a, b) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} *\right\}$.
(3) $\left\{* \delta_{I-R^{\prime}}(a, b) \mid(a, b) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} *\right\}$.

- Notice that

$$
\begin{aligned}
& \left\{* \delta_{I-R}(a, b) \mid(a, b) \in \mathbb{F}_{2^{6}} \times \mathbb{F}_{2^{6}} *\right\}=\left\{* 0^{1118} 2^{1980} 4^{936} 6^{60} 8^{0} 64^{2} *\right\} . \\
& \qquad\left\{* \delta_{F_{C}-R}(a, b) \mid(a, b) \in \mathbb{F}_{2^{6}} \times \mathbb{F}_{2^{6}} *\right\}=\left\{* 0^{k_{0}} 2^{k_{2}} 4^{k_{4}} 6^{0} 8^{0}(64)^{2} *\right\} . \\
& \left\{* \delta_{I-R^{\prime}}(a, b) \mid(a, b) \in \mathbb{F}_{2^{6}} \times \mathbb{F}_{2^{6}} *\right\}=\left\{* 0^{1152} 2^{1980} 4^{840} 6^{120} 8^{2} 68^{2} *\right\} . \\
& \text { It can be verified by Magma that for any } s, t \in \mathbb{F}_{2^{6}} \text {, the projected } \\
& \text { differential spectrum }
\end{aligned}
$$

$$
\left\{* \delta_{H_{T}}(u, v)+\delta_{H_{T}}(u+s, v+t) \mid(u, v) \in \mathbb{F}_{2^{6}} \times \mathbb{F}_{2^{6}} *\right\}
$$

is not equal to any multiset above.
Thus it is CCZ-inequivalence to any functions in the three great classes of 4-un.PPs.

- One can check it is CCZ-inequivalence to any other known 4-un.PPs by CCZ-equivalent invariants.

THANK YOU!

